Information technology of forecasting non-stationary time-series data using singular spectrum analysis
نویسندگان
چکیده
منابع مشابه
Using Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملForecasting Non - stationary Economic Time Series
Forecasting macroeconomic time series is notoriously difficult. Previously unannounced changes in policy, natural and man-made disasters, institutional changes, new discoveries, new data definitions and revisions among others cause occasional large forecast errors in the standard constant-parameter models. While much effort has been put into working out the theory of estimation, inference and i...
متن کاملTime Series Forecast with Singular Spectrum Analysis
We propose a novel approach for constructing Singular Spectrum Analysis (SSA) forecast based on estimating new coefficients of Linear Recurrent Formula. The results indicate that the proposed method is more reliable in comparison to the widely used approaches that were proposed along with SSA. We conduct simulation studies to compare the relative performance of the new method with the existing ...
متن کاملGeneralized Singular Spectrum Time Series Analysis
This paper is a study of continuous time Singular Spectrum Analysis (SSA). We show that the principal eigenfunctions are solutions to a set of linear ODEs with constant coefficients. We also introduce a natural generalization of SSA, constructed using local (Lie-) transformation groups. The time translations used in standard SSA is a special case. The eigenfunctions then satisfy a simple type o...
متن کاملSingular Spectrum Analysis for Time Series
Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA aims at decomposing the original series into a sum of a small number of interpretable components such as a slowly varying trend, oscillatory components and a ‘...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eastern-European Journal of Enterprise Technologies
سال: 2014
ISSN: 1729-4061,1729-3774
DOI: 10.15587/1729-4061.2014.22158